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Using earlier results [1, 2], Green's tensor for an elastic cylinder is constructed. This enables the ease of multiple eigenvalues to 
be considered. The static problem receives special attention. Green's tensor for an infinite cylinder is constructed as an expansion 
in terms of elementary solutions. For a cylinder of finite length the construction of Green's tensor can be reduced to an infinite 
system. An asymptotic analysis of the classical Saint-Venant problems is carried out. The notions of the vector-valued Green's 
function and Green's tensor are introduced into the Saint-Venant theoxy and they are constructed in explicit form. © 1996 Elsevier 
Science Ltd. All fights reserved. 

The solution of the problem of the steady-state vibrations of an infinite cylinder subject to a point force 
applied at an arbitraxy point was represented in [3, 4] in the form of expansions in terms of homogeneous 
elementary solutions and can be regarded as Green's  tensor of  the boundary-value problem, However, 
the case when the eigenvalue problem on the cross-section has multiple spectrum points has not been 
considered. The case of critical frequencies and the very important case of  the static problem have 
thereby been excluded from consideration because the null eigenvalue of the latter has an algebraic 
multiplicity of  two. In particular, the null eigenvalue corresponds to the classical solutions of  the Saint- 
Venant problem [5] on the stretching, twisting, and bending of a cylinder of finite length by forces applied 
to one of its ends. 

1. Let  V = S x [-~,, ~] be a domain occupied by an ideal elastic medium, let S be the cross-section 
of the cylinder, 3S the boundary of S, and let F be the lateral surface of the cylinder. We place the origin 
of a Cartesian system of coordinatesxlxzx 3 on the principal axes Of the section So, the x3 axis being parallel 
to the generatrix of  the cylinder. 

We shall conside~r the harmonic vibrations of the cylinder generated by a point force proportional 
to e -/°~ and applied at a point O" with coordinates (~ ,  x~, 0). 

We shall assume that the lateral surface of the cylinder is stress-free. 
The following notation is used below: u = {u k }~=1 is the displacement vector, qr = {0"3k}3=1 is the 

stress vector in the planes orthogonal to thex 3 axis, F 0 = F~(x 1 -X~l)~(x2 --X/2)~(ff3) is a vector representing 
the point force, F = {Fk}3=l, 8(x) is the delta-function, and w = {It, 0"} is an extended six-component 
vector. Henceforth,  u and ¢r will be called the u- and o-components. 

We shall consider w to be a vector-valued function w(x)(x = x3) with values in the Hilbert space 
H '  = H ~ H with sc~alar product 

(w( l )  ' W(2) )H' = (u( I ) ,  n(2) )H -I- (lY(I),IF (2))H 

3 
(U( I ) ' u (2 ) )H  =" S u(I) "u(2)ds  -- S ~ t, k '  (1);7(2)d~,4 k t,a 

s s k=l 

The equations of equilibrium and of  steady-state vibrations together with the boundary conditions 
on F can be written in the form [6] 

dw/dx- iTw = K (I.i) 

where T is an unbounded operator  in 11" and K = i{0; F0}. 
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The eigenvalue problem 

Tv = "D' (1.2) 

corresponds to the homogeneous problem (1.1). 
We know [2, 7] that for any bounded frequency co the spectrum of T can be split into A = A ° U A + 

U A-, where A ° is a fmite set of real eigenvalues (EVs) ~r, and A +, A- are unbounded sets of complex 
EVs ?~, ~ ( I m  ?~ > 0, Im 7k < 0). A multiple EV corresponds to the case to'(?k) = 0, the group velocity 
being equal to zero. 

We will denote by Wthe set of elementary solutions of the homogeneous equation (1.1). Each element 
of this set can either be represented in the form 

W s = Vs  e ~ s x  

where Ts is a simple EV of the eigenvahe problem (1.2), or in the form 

• 

Wsn = eq'.v x Vs,n_ l 
/=0 

if Ts is a multiple EV, which may correspond to one or more systems of eigenvectors and associated 
vectors (Jordan chains) vt0, v n , . . . ,  VtNt. 

It has been established [1, 2] that, for any structure of the spectrum, IV = W + O W-, where W + and 
W- are defined as follows: in the case of real EVs (s = r)Wr ~ W +, if (JWr, Wr) > 0, and wr ~ W- if (Jwr, 
wr) < 0 ,  where J = ill Jkl II, J14 = J25 = -/36 = -1, J41 = J.~2 = J63 = 1 with Jkt = 0 for the remainin~ ones; 
in the case of complex EVs (s = k)Wk e 14 '+ if Tk = Tk, and Wk ~ W'- if Tk = ~-  Below ws = w s(W~) if 
ws w + 

Since the energy flow through the cross-section of the cylinder is 

P(w)= ~[w, w]/4 

[w, w l = ( J w ,  w) H, =i[(u ,o)n  --(U, f f )n]  

it follows that, in the case of oscillations, W is decomposed in accordance with the energy radiation 
principle [8]. 

We denote by vs = ws(0) = (as, bs} the traces of the elementary solutions in the section x = 0. We 
will use the following biorthogonality properties below 

[V~,V~]=+--2prSrt, [v~,v~]= 0 (1.3) 

[V~,V~m]=2p~:Skm, Pk = - p ~  (1.4) 

as well as the properties of completeness and minimality in H', which follow from [2, 9, 10]. In (1.3) 
and (1.4) the subscripts r and I refer to vectors corresponding to real EVs, while m and k refer to those 
corresponding to complex EVs. 

We will denote the solution of the problem under consideration by 

• ' 0) G(x) = G(x I , x 2, x 3, x I , x2, 

and call it the vector-valued Green's function. We shall seek it in the form 

G ( x ) = G + ( x )  ~, + + = C.~w s , x > 0  
$ 

G ( x ) = G - ( x ) = E  C~ws,  x < O  
$ 

(1.5) 

Since the right-hand side of (1.1) is proportional to 8(x) (see (1.2)), the solution undergoes a jump 
at the cross-section x = O, so that 

G(+0) -  G(-0)  = G + (0) - G- (0) = K o (1.6) 
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Ko =i{0,Po}, Po =FS(xl-x~)5(x2-x~) 

Substituting (1.5) into (1.6) and using the biorthogonality properties (1.3) and (1.4), we obtain 
in the  case of  real  E V s  

C~r = i(2Pr) -l-±a t • F (1.7) 

in the  case o f  complex  EVs  

C~ = +i(2 p~ )-I-T. a r .F  (1.8) 

In  (1.7) and (1.8) a~ = u~(x'l, x~, 0) are the c o m p o n e n t s  of  the d isp lacement  vec tor  o f  the  corres-  
pond ing  e l e m e n t a l y  solut ion at O' .  

Substi tut ing (1.7) and  (1.8) into (1.5), we get 

G+ (x)=G~(x)+G~(x), G~(x)=i~, (2Pr)-l('~r "F)w~(x) 
r (1.9) 

G~ (x) = :l:i~ (2p~:)-I ( ~ .  V)w~:(x) 
k 

Taking the  u - componen t ,  we obta in  expressions for  the c o m p o n e n t s  of  G r e e n ' s  tensor  

Uml i~ ,  -1--+ ± (2pr )  aaU~m ±iY~ ± -l--~- ± = (2pk )  a~ukm 
r k 

2. Cons ider  the static p rob l em (co = 0). In this case the real  pa r t  o f  the spec t rum of  (1.2) consists 
o f  a 12-fold E V  "¢ = 0. T h e  corresponding invariant  subspace  of  T is defined by the following 
system of  e igenvectors  and associated vectors  Vr = {ar, br} (r = 1, 12) 

a I = (1,0,0), a 2 = (0 ,0 , - i~ t ) ,  a 3 = (0,1,0)  

a4 = (0, 0 , - i~2  ), a5 = (0,0,1), a6 = ( -~2 +~2,~1 - ~ , 0 )  

a 7 = (0,0,i01), a s m (~1/11,~1/12,0),  a 9 = (0,0, i02) 

alo = (W21,~I/22,0), all  = (--iv~I,--iv~2,0),  a12 = (0,0, i0)  

b ,  = (0 ,0 ,0)  ( r  = 1,6) 

b 7 = i(xll, '~t2,0), b s = (0 ,0 , -Eo~l ) ,  b9 = i(x21,x22,0) 

bto = (0 ,0 , -Eo~2) ,  bll = (O,O, iEo), bl2 = i ( 3 2 ~ , - ~ 1 ~ , 0  ) 

To each  vec tor  Vr the re  cor responds  an e lementa ry  solution 

Wr(~)  = {Ur(~),O'r(~)}: 

u l f a  I, u 2 = i ~ a l + a 2 ,  u 3 = a  3, u4=i~a3+a4 

U 5 = a  5, U 6 = a  6, U 7 = I / 6 ( i ~ ) 3 a l  + I / 2 ( i ~ ) 2 a  2 +i~a  8 + a  7 

~ = ~ ( i ~ ) 2 a  I + i~a  2 + a  s, u 9 = 1~(i~)3a 3 + ~ ( i ~ ) 2 a  4 + i~alo + a  9 

Ull =i~as+a11, ul2 =i~a6+ai2 ul0 = ~(i~)2a 3 +i~a 4 +alo, 

o" r = (0, O, 0) ( r  = 1, 6) 

~r 7 = i~b s + b 7, ¢r s = bs,  ¢r 9 = i~blo + b 9 

o'10 = b l o ,  oral = b  H, o'z2 =b~2 

(2.1) 

(2.2) 

In  (2 .1 )x*  = h~* are  the coordinates  of  the centre  of  twisting 
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V l l  = - -V22 = V / 2 ( ~ 2  2 _~2), Vl2  = ~/21 = - -V{I{2 

"r~ = 3̀130c~ + ~ctl3, a,[~ = 1, 2 

The functions 01, 02, 0, O solve the boundary,value problems 

AOa = 2~c t, n13`3130c~l~s = nl~c~l ~ 

AO = -2,  `3s~las = 0 

a o  = o, n `3 Olas = 

E 0 = 2 ( 1 + v ) ,  E=IXE 0, 

A = `3~ +`3~,  `3,~ = ,3/`3~,~, `3, = a / `3s  

(2.3) 

where IX is the shear modulus, v is Poisson's ration, n~ is the projection of the unit normal vector on to 
the lateral surface of the cylinder, and s is a variable along the contour `3S. 

All the expressions above are written in dimensionless coordinates ~ = h-lxa, where h is a 
characteristic linear dimension of S. The displacement and stress vectors are also dimensionless and 
can be obtained by dividing the corresponding dimensional quantities by IX and h. 

Because the static problem is considered, when constructing the vector-valued Green's function there 
is no need to require that G~ and G~ should satisfy the radiation condition, so that one does not have 
to change from the system of elementary solutions (2.2) to the fundamental system of elementary 
solutions [2]. G + and G- can be constructed using the following properties. 

Property 1. A displacement of the cylinder as a rigid body corresponds to the system of elementary 
solutions (2.2) for r = 1, 6. 

The following properties follow from the results of [2, 9, 10]. 
Property 2. The system of vectors M = {Vr, v~, vT,} (r = 1, 12) is minimal and complete in H'. 
Property 3. The systems of vectors M~ = {at, a~} (r = 1, 6) and M~ = {br, b~} (r = 7, 12) are minimal 

and complete in H. 
Property 4. The following generalized orthogonality relations hold 

[V6+r, Vt] = -i(b6+r, at)n = Pratt, r, t = 1, 6 (2.4) 

[ v ~ , v t ]  = - i ( b ~ , a t )  n = 0, t = 1,--6 

H e r e p l  = P2 = DI,p3 = P4 = D2,P5 = Dp, p6 = Dk~, D1 = h-4EoI2, D2 = h-4EoI1, Dp = h-2EolSI, Dip 
= h C , / 1  a n d / 2  are the principal moments of inertia, I S I is the area of cross-section, and C is the 
geometric twisting stiffness of the cross-section. 

We shall now construct the vector-valued Green's function. Properties 1 and 2 enable us to seek it 
in the form (1.9) with 

12 
G O = y~ C~Wr(~ ) (2.5) 

r=7 

By Property 4, we have 

C~r =+(2pr)-li(~r .p), r =~/,12 (2.6) 

C~: = +(2p~:)-' i ( ~ .  P) (2.7) 

P = F / I X  h2, a ~ = a , ( ~ , ~ )  

Taking into account that Go = {G0u, G0o}, where G0u and G0o are the u- and a-components, by (2.5) 
and (2.6) we obtain the expressions for the displacement tensor and the force tensor 

GL =UL.e, GL =uL., (2.8) 



Green's tensor for an elastic cylinder 101 

12 12 
U~u =+i Y. (2Pr_6)-IUri'r, U~e =+i X (2pr-6)-lo'ra; 

r=7 r=7 

Naturally, the solution constructed has no independent physical meaning. It must therefore be 
considered as a partial solution of the inhomogeneous problem (1.1), which forms a part of the vector- 
valued Green's function (Green's tensor) for various boundary-value problems for a cylinder of finite 
length. 

3. As an example, we consider the boundary-value problem for a cylinder of finite length (x, [0, L]), 
one end of which is damped,  the other one being stress-free. The cylinder undergoes a deformation 
under a point force applied at O1(~, x'2, x ') .  Changing to the dimensionless coordinates, we shall seek 
a solution in the form 

WG (~, ~ ' )  = W0 (~) + Wl (~) + GO (~ _ ~t)  + G!  (~ _ ~,)  

12 
Wo(~,) = 3". A,.w,.(~) (3.1) 

r=l 

w,(~)---Y. [A~w~(~)+A~w~(~- l )] ,  l f L / h  
k 

We shall determi~ae the coefficients of the expansion (3.1) from the boundary conditions 

u(0) = 0, or(l) = 0 (3.2) 

Substituting (3.1) into (3.2), we obtain 
12 
E Ara, + E [A~'a~ + A~e-~ta~]  = - G ~ ( - ~ ' )  (3.3) 
r=l k 

12 
A,er, (1) + ,V_, t'~kfa +o/adk+~ " t  + A~'b~" ] = -Go + (1 - ~') (3.4) 

r=7 k 

ak=hTk, a k=a~ 

The functional relationships (3.3) and (3.4) can be reduced to algebraic ones if Property 3 is used. 
{a~}~ffil and using (2.4) and Thus, taking tke scalar products of (3.4) by the elements of the subset 6 

(2.5), one can determine the coefficientsAr, r = 7, 12. We have 

a 7 = -C~,  /t 8 = i~'C~ - C~s, A 9 = -C~,  (3.5) 

A,o=i~'C~-C~o,  A,I=-C~I,  AI2=-C~2 

The computation of the remaining coefficients of the expansion can be reduced to the solution of an 
infinite system of algebraic equations of the form 

~t  ~ictklA+ 
Y" "tin ~ "~k + E ctmA-t = dml 
k k 

-Y~ ~ A ~  + ~ c~e-radA~ = din2 
k k 

(3.6) 

(ctaA k + cjae A k ) - d, (3.7) ip, At + ~, + + - - a d -  _ 
k 

t = l , 6  

Here 

d,nl = - E  c~mP~e ~kff-~'), Pk =i(2p~)-I(a~ "P) 
k 

12 
d . 2  = -  Y c+ .A ,  - (b+.,G.(-~')). 

r=7 
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12 
dt = Z (Prt c+ + Z c~te-'a*{'Ck 

r=7 k 

C~I =(b~,am)t~, c ~  =(b~,a~,)H, 
+ + 

Crm =(bin,a,) H, cn =(b6+t,a,) . 

(Prt = -Crt + (b6+t,Ur(--~'))U + i~" Crt, 

(Prt = -Crt + (b6+t , Ur (-~') ) U , 

C~ =(b6+t,a~) H 

r = 7 , 9  

r = 8,10,11,12 

When e =/-1is a small parameter, the above relationships enable us to carry out an asymptotic analysis 
of various boundary-value problems and obtain accurate asymptotic estimates for the various components 
of the stress-strain state. 

This will be demonstrated using the classical Saint-Venant problems as an example. To do this we 
set 

o'(/) = o'* (~ i ,~2) , ~ ' = l  

in the second boundary condition (3.2), and we introduce a new variable ~ = l~. Applying the super- 
position principle, by (2.1), (2.6) and (2.7) we find that 

C~: :l:i(2p~)-ll * - ~  ' ' = (0" "~m k ) d ~ l d ~ 2  
s 

iFl* M; 
C~ = 2gh2 D, C; = ' 2gh3Dl 

_ iF2* M~ 
C~ 2gh2D2 C~o= ' 2gh3D2 

iF3* iM 3 + i( F3*~ - F2*~ ) 
C~ = 2gh2Dp , C(2 = 2gh3O~ 

(3.8) 

Here  Fk, M~ are the projections of the principal vector and principal moment applied to the end ~ = 
I of the cylinder. 

From (3.5) and (3.8) one can see thatAr, r = 7, 12 can be determined exactly. 
Turning to the infmite systems (3.6), in which we neglect the sums containing exponential factors, 

we can conclude thatA~ are of order one in e and 

A; = e-aB(k°) + B 0) +O(e-B't), ~, = inf(Imak) 
k 

12 

°) + 9kc¢, si')=,=Z 8  ,kc: 
r~9 

(3.9) 

Substituting (3.12) into (3.8), we get 

12 
s + A, = ~, ((Pr, +(Pr,)Ct (3.10) 

r:7 

~%, = ¢ - I ~  + , • c~q}~, 0 t=7 ,9 ;  (p . , t=~ + Ck, q)sk, S = 8,10, I I ,12  
k k 

Using (3.10), one can now analyse the effect of the exponential solutions (the boundary layer) on 
the inner deformed state through the constants At, (t = 1, 6) (they have no effect on the inner stress 
state because the stresses corresponding to the elementary solutions containing these coefficients are 
equal to zero). The leading terms OrAl and A3 are of order e -3, the correction term related to (p~ 

1 (a  = 7, 9) being of order e - .  The leading terms of  A2 and A 4 are of order e -2, the corrections being 
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of  order one. The leading terms ofAs andA6 are of order C -1, the correction terms being of order one. 
The above analysis enables us to obtain accurate asymptotic estimates for the differences vi(~) = 

ui(~) - u°  (~), v ' i  = ui - ui - ui °', and  "qj = aij - 6 °', where ui and  t~ij are the components of the displacement 
vector and the stress tensor of  the exact solutlon, u°being the components of the displacement vector 
of Saint-Venant's theory in the case when 

12 

A, = Z C,*~n (3.11) 
r=7 

wherea t  are determined ignoring the boundary layer; u/°' are the components of the displacement vector 
in the case when the A t are determined from (3.10) (with the boundary layers taken into account). 

In the case when F *  ~ 0 (ix = 1, 2), us has the leading order c -3 among the displacement components, 
and aas has the leading order e -1 among the stress components, all the remaining stresses being of order 
one, with 

ev i  = O(1), ex}~ = O(X), c't 0 = O(X ) (3.12) 

In the case when/; '* = 0, M~ ~ 0, and M~ = 0 the component  u2 is of leading order c -2, all the stresses 
being of order one with 

ui =O(1), ~ = O ( x ) ,  x o =O(~)  (3.13) 

In the case when/;~* = 0, F~*  0 and M*~ 0, us is the displacement of  leading order e -2, all the stresses 
are of order one, and the estimates (3.13) are satisfied. 

WhenF/*= 0, M* = 0, and MJ ~ 0, the displacements us have the leading order e -2, all the stresses 
are of order one, and the estimates (3.13) are satisfied. 

The estimates are given for 0 < ~ < 1; Z = exp(-~l.l~) when 0 < ~ < 1/2, and X = e exp(-~.l(1 - ~)) 
when 1/2 < ~ < 1. 

Thus, the boundary layers enable us to obtain better estimates for the displacements in Saint-Venant's 
problems. They have no effect on the estimates for the stresses. 

Here  one should note that, first, the estimates obtained from x 0 strongly support the Saint-Venant 
principle (a rigorous proof of  which was first given by Toupin in [11]; profound extensions of Toupin's 
approach were obtained in [12]) and, secondly, no estimates for ~ ' /can be established. 

Using the superposition principle and the relationships obtained above, a similar asymptotic analysis 
can also be carried out in the case of arbitrary distributed external volume and surface forces. 

We shall now define the vector-valued Green's function of Saint-Venant's theory for the boundary- 
value problem under consideration as 

12 

w a = G O + w  o = Y. C+gr(~,~ ") (3.14) 
r=7 

where C+are defined by (2.6) and 

g r = g r  +, 0 ~ < ~ < ~ ' ;  g r = g r ,  ~ < ~ < l  
6 

g~r = 8s,r+li~'Wr (~) + Y~ q~nwt (~) + W r (~ - ~'1 
t=l 

Using (3.14) we can obtain in an obvious way expressions for the displacement and force tensors. 
We have 

12 12 
U ° = Y. g~,K,, U°o = ~ g,nKr (3.15) 

r=7 r=7 

where g~, and g,~ are the u- and o-components of g.. 
If, in place of  a point force F applied at Ol(X~, x~, It), we introduce an equivalent system consisting 

of a force F and-a moment  M applied at O2(0, 0, x'), then (3.14) can be considered as a solution of the 
boundary-value problem within the framework of an applied theory taking shear into account. The 
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constants C + must then be computed from (3.8) with F* = Fi and M* = Mi. Many papers have been 
devoted to the construction of various versions of theories of this kind, a detailed survey of which can 
be found in [13, 14].t 

This research was supported financially by the Russian Foundation for Basic Research (94-01-00159-a). 
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